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Abstract: Improving the efficiency of vibration power generation is an important research topic. Therefore, it is effective to 

develop a vibration power generation system using a bistable vibration model. The bistable vibration model considered in 

previous studies has the problem that the center of gravity is high and the vibration power generation efficiency is relatively low. 

In this study, we propose a horizontally opposed mass-spring type bi-stable vibration energy harvesting system that can be 

applied to low spaces. A bi-stable vibration system is built using horizontally opposed elastic springs and mass blocks. An elastic 

composite beam is constructed from an elastic bending plate and spring, and vibration power is generated using a piezoelectric 

element. An equation of motion is established accounting for the elastic composite beam, and a numerical analysis method based 

on the Runge-Kutta method is proposed. A formula for predicting the periodic excitation frequency at which stochastic resonance 

is most likely to occur is derived. A bi-stable vibration energy harvesting experimental device using a piezoelectric element is 

fabricated, and the proposed numerical analysis method and periodic excitation frequency prediction formula are validated. The 

amplitude increases and vibration power generation performance due to stochastic resonance are confirmed. In the verification 

experiment, it was confirmed that the vibration amplitude was expanded more than 7 times and the power generation amount 

increased by 21%. 

Keywords: Ambient Energy, Bi-Stable Vibration System, Piezoelectric Element, Stochastic Resonance,  

Vibration Energy Harvesting 

 

1. Introduction 

In a vibration energy harvesting system, increasing the 

vibration amplitude improves the power generation 

efficiency [1-5]. Therefore, it is advantageous to use a 

vibrating system with a natural frequency equal to the 

external excitation frequency, but this would be difficult 

under complex environmental vibrations [6-8]. 

To solve this problem, several linear vibration systems 

with different natural frequencies have been combined [9, 10], 

and a nonlinear vibration system that can be applied over a 

relatively wide frequency range has been proposed [11-13]. 

However, the vibrating device is complicated, and the 

obtained amplitude improvement is relatively small. 

Therefore, stochastic resonance, which increases the 

amplitude of a vibration system in a random excitation 

environment, has attracted attention [14, 15]. In stochastic 

resonance, the vibration response is significantly amplified 

by applying a single-frequency vibration to a bi-stable 

vibration system in a random vibration environment [16-18]. 

To generate stochastic resonance in a mechanical system, 

three elements are required: a nonlinear bi-stable vibration 

system, random vibration, and periodic external force, the 

most important being the bi-stable vibration system [19, 20]. 
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Figure 1. Diagram of the bi-stable vibration harvesting system. 

In previous studies, the cantilever beam structure with a 

mass block at the tip was commonly used in a bistable 

vibration system [21]. To realize bi-stable vibration energy 

harvesting, a power generation device based on a bistable 

vibration system mounted on a low-speed vehicle tire has 

been developed [22].  

However, in addition to a problem of durability of the 

bi-stable vibration system, the vibration range is small due to 

the elastic bending deformation of the cantilever beam [23]. 

A bistable vibration model composed of elastic springs and 

mass blocks has been proposed to study bi-stable vibration 

systems with larger amplitudes [24]. However, this model is 

difficult to apply to low spaces. 

In this study, we propose a horizontally opposed bi-stable 

vibration energy harvesting system using piezoelectric 

elements. An elastic composite beam is assembled using an 

elastic bending plate and a spring, and is combined with a 

piezoelectric element to realize vibration power generation. An 

equation of motion for a system accounting for elastic 

composite beams is established, and a numerical analysis 

method using the Runge-Kutta method is proposed. An 

equation predicting the periodic excitation frequency at which 

stochastic resonance is most likely to occur is derived. We 

build a bi-stable vibration-energy-harvesting experimental 

device and perform measurements of the performance of 

stochastic resonance and vibration power generation. We 

validate the proposed numerical analysis method and the 

predicted excitation frequency that causes stochastic resonance, 

and evaluate the amplitude increase and vibration power 

generation performance due to stochastic resonance. 

2. Materials and Methods 

2.1. Bi-Stable Vibration Energy Harvesting System 

We propose a bistable vibration energy harvesting system, as 

shown in figure 1. A mass block moves along the horizontal rails. 

An elastic composite beam consisting of elastic springs and thin 

elastic bending plates is installed between the mass block and 

supports on both sides. Both ends of the composite elastic beam 

are fixed to the mass block and support base. A piezoelectric 

element is attached to the surface of the elastic bending plate. An 

alternating voltage is generated from the piezoelectric element 

that deforms with the elastic bending plate. A rectified voltage is 

produced using a diode bridge circuit. The electrical load 

resistance of the measuring circuit is 1.0 MΩ. 

Figure 2 shows the analysis model extracted from the 

bi-stable vibration system. xd is the distance from the central 

axis to the mass block. xt is the distance from the central axis 

to the fixed base. x is the relative displacement of the mass 

block with respect to the fixed base. h is the vertical distance 

between the upper and lower fixing points of the elastic 

bending plate. Fs denotes the restoring force of the elastic 

spring. The elastic composite beam is assumed to be vertically 

symmetrical, and the horizontal deflection xb of the elastic 

beam due to bending is assumed to be constant. The restoring 

force of the elastic spring lies approximately along the straight 

line connecting the upper and lower fixed points. 
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Figure 2. Vibrating model of the bi-stable vibration harvesting system. 

Figure 3 shows the experimental bi-stable vibration energy 

harvesting device. A mini-shaker is attached under the vibration 

system, and a single-frequency external force is applied from 

the mini-shaker. An experimental device consisting of a 

vibration system and a mini shaker is fixed on the upper surface 

of the general shaker, which applies random vibration. 

 
Figure 3. Experimental setup and measurement system of the bi-stable vibration harvesting system. 
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Figure 4. Three stable vibration states: (a) left-side mono-stable vibration, (b) right-side mono-stable vibration, and (c) bi-stable vibration. 

To measure the vibration displacement, measurement 

markers are attached to the mass block and fixed base. A 

high-speed video camera is used to record the motion 

trajectory of the measurement marker, and tracking processing 

software is used to create time-series vibration displacement 

data. The lead wire of the piezoelectric element is connected to 

the data logger through the diode bridge circuit, and the 

voltage of the vibration power generation is recorded. 

Table 1 shows the detailed parameters of the bistable 

vibration energy harvesting experimental device and 

measurement system used in this study. 

Table 1. Specifications of the experimental setup of the bi-stable vibration 

energy harvesting system. 

Items Specifications 

Mass block Mass 605 g 

Horizontal rail Length 350 mm, Width 50 mm 

Distance in the plane From rail to support base 200 mm 

Elastic spring Spring constant 295 N/m, Initial length 90 mm 

Elastic bending plate Size 90×20×0.3 mm, Young's modulus 210 GPa 

Piezoelectric element K7520BS3 (Thrive Co., Ltd) 

Diode D1NS6-5060 (SHINDENGEN Co., Ltd) 

Mini shaker SSV-105 (SAN ESU Co., Ltd) 

General shaker SSV-125 (SAN ESU Co., Ltd) 

Amplifier SVA-ST-30 (SAN ESU Co., Ltd) 

Function generator NF-WF1973 (NF Corporation) 

Video camera GZ-E765 (JVC Co., Ltd)，FPS=300 

Marker tracking system MOVIS V3.0 (NAC Image Technology Inc.) 

As shown in figure 2, the initial length of the elastic 

composite beam at rest is larger than h; therefore, there is one 

equilibrium position on each side of the mass block at rest. 

As shown in figure 4, there are three vibration states for 

the mass block. Figure 4(a) shows the vibration state centered 

at the left-side equilibrium position. Figure 4(b) shows the 

vibration state centered at the right-side equilibrium position. 

Figure 4(c) shows the vibration state that passes through the 

central symmetry axis and straddles the left and right 

equilibrium positions. Vibrations around a single equilibrium 

position, as shown in figures 4(a) and (b), are called 

monostable oscillations. Oscillation between two equilibrium 

positions, as shown in figure 4(c), is called bi-stable 

oscillation. 

2.2. Analysis Method 

From figure 2, the horizontal motion equation of the mass 

block is expressed as. 

( ) 4 2 cos 0d d t b b smx c x x K x F θ+ − + + =&& & &      (1) 

where Kb denotes the stiffness coefficient of the thin elastic 

bending plate, and c is the damping coefficient. The relative 

displacement x of the mass block with respect to the fixed base 

is expressed as. 

d tx x x= −                    (2) 

Substituting equation (2) into equation (1), the equation of 

motion is as follows: 

4 2 cosb b s tmx cx K x F mxθ+ + + = −&& & &&        (3) 

From figure 2, the tilt angle is expressed as follows. 

2 2
cos

x

x h
θ =

+
               (4) 

Ignoring the change in length of the elastically bent plate 

during the vibration process, the deflection of the elastically 

bent plate can be approximated with the following expression: 

cosb bx l θ=                   (5) 

The elastic force of the spring is given by 

( )2 2 2s s b sF K x h l l= + − −           (6) 

where Ks and ls are the elastic modulus and free length of the 

spring, respectively. The elastic modulus of an elastically bent 

plate can be calculated using the following equation [25]. 

3

3
b

b

EI
K

l
=                    (7) 
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where E is the Young's modulus of the material, and I denote the 

area moment of inertia. By substituting equations (4)–(7) into 

equation (3), the equation of motion can be expressed as follows: 

2 2 2

6 1
1 2 2s b s t

s b

EI
mx cx K l l x mx

K l x h

  
+ + − + − = −    +  

&& & &&  (8) 

The equivalent length of the elastic composite beam is 

given by 

2

6
2e b s

s b

EI
l l l

K l
= + −                (9) 

Therefore, the equation of motion (8) is expressed as follows. 

2 2
2 1 e

s t

l
mx cx K x mx

x h

 
+ + − = − 

 + 

&& & &&     (10) 

The potential energy of the vibrating system is given by 

( )2 2 22s eU K x l x h= − +           (11) 

To investigate the distribution characteristics of the 

potential energy, we solve equation (12): 

2 2
2 1 0e

s

ldU
K x

dX x h

 
= − = 

 + 
       (12) 

Three solutions are obtained, as expressed in (13). 

0 0x =  
2 2

1 ex l h= − −  
2 2

2 ex l h= −    (13) 

The potential energy distribution in equation (11) is 

represented in Figure 5. x0, x1, and x2 in Equation (13) are the 

extrema of the potential energy, and correspond to the three 

equilibrium positions of the mass block. ∆U is the potential 

energy barrier of vibration of the mass block. 

When the mass block vibrates, it oscillates in a single 

stable motion on the left or right side if the sum of the 

kinetic and potential energies does not exceed the barrier 

value. When the sum exceeds the barrier value, the mass 

block crosses the central axis, and bi-stable vibration 

occurs. 

 
Figure 5. Distribution characteristics of potential energy for the bi-stable vibration system. 

When random excitation is applied to a bistable 

vibration system, the mass block oscillates often 

mono-stably on the right or left sides of the central axis. 

When random and periodic external forces are applied 

simultaneously, the vibration of the mass block turns into 

bistable vibration, and resonance with a large amplitude 

occurs. This type of resonance is called stochastic 

resonance because the random vibration environment 

contains uncertain factors [16]. 

Applying the Runge-Kutta method to equation (10) yields 

the relative displacement xi. By adding the excitation 

displacement xti of the support table to the relative 

displacement xi, the absolute displacement xdi of the mass 

block can be calculated as follows: 

��� � �� � ��� � � 1,2,⋯ , �             (14) 

Before performing the vibration analysis, it is necessary to 

determine the damping coefficient c of the vibration model; 

this is performed using the following procedure: 

First, the vibration system is excited by a sinusoidal signal 

(1.8 Hz in this experiment), and the vibration displacement of 

the mass block is measured. Next, a provisional damping 

factor is set. Then, a vibration analysis is performed, and the 

analytical solution and measured value of the vibration 

displacement are compared. 

If the error satisfies the convergence criterion (error in 

relative displacement is 0.01% or less), the damping 

coefficient is obtained, and the identification is terminated. If 

the error does not satisfy the convergence criterion, the 

damping coefficient is adjusted, and vibration and accuracy 

checks are performed again. 

This analysis and checking process are repeated until the 

convergence criterion is met. 

Figure 6 shows the results obtained by identifying the 

bistable vibration model used in this study. The analytical and 

measured response displacements agree. The corresponding 

damping coefficient is c=1.92 Ns/m. In addition, as a result of 
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identification using other sine waves with excitation 

frequencies between 1.0 Hz and 3.0 Hz, it is confirmed that the 

damping coefficient c is almost unchanged. 

 
Figure 6. Displacement results for the identification of the damping coefficient. 

2.3. Conditions for Stochastic Resonance 

Stochastic resonance can be generated by exciting a 

bi-stable vibration model in a random excitation environment 

with a periodic excitation signal. The periodic excitation 

frequency at which the stochastic resonance is likely to occur 

can be predicted by the following equation [16]: 

0 exp
4

b
k

w w U
f

q Dπ
 ∆= − 
 

             (15) 

where wb and w0 are the natural angular frequencies at the 

extreme points of the potential energy, respectively. By 

differentiating the potential energy equation (11) and using 

equation (13), wb and w0 can be calculated as follows: 

( )2 2
2

2

2
1

e
s

b

e

U l h
K h

w
m m l

′′ −  
= = −  

 
      (16) 

( )
0

0 2
1s e

U K l
w

m m h

′′  = = − 
 

          (17) 

le is the equivalent length of an elastic composite beam and 

is calculated using equation (9). Q is the damping parameter, 

which is calculated using the following equation: 

c
q

m
=                     (18) 

The potential energy barrier per unit mass is expressed as 

follows: 

( )2
sK

U l h
m

∆ = −                (19) 

By substituting equations (16) – (19) into equation (15), the 

prediction equation for the periodic excitation frequency at 

which stochastic resonance is likely to occur is expressed as 

follows: 

( ) ( )2

exp
2

s e s ee
k

e

K l h K l hl h
f

cl h mDπ

 − −+  = −
 
 

   (20) 

Using the parameters of the bistable motion system shown 

in table 1 and equation (9), the equivalent length of the elastic 

composite beam is obtained using the following equation: 

3

2
2 0.246

2

b b
e b s

s b

Eb h
l l l m

K l
= + − =         (21) 

The signal intensity D of the random excitation is obtained 

from the kinetic energy per unit mass. After measuring the 

vibration velocity while vibrating with only a random signal, the 

signal strength can be calculated using the following equation: 

( )
2

1

1

2

N

i aver

i

D v v
N =

= −∑            (22) 

where vi denotes the vibration velocity, vaver denotes the 

average vibration velocity, and N denotes the number of 

sample points in the measurement experiment. By substituting 

the actual measured values into equation (22), the signal 

strength of the random excitation (D=0.785 J/kg) is obtained. 

From equation (20), the predicted value of the periodic 

excitation frequency at which stochastic resonance is likely to 

occur is given by: 

2.64kf Hz=                (23) 

3. Results and Discussion 

Based on the predicted excitation frequency given by (23), the 

frequency of the periodic excitation signal used in the experiment 

was set from 2.0 Hz to 3.2 Hz with intervals of 0.3 Hz. The 

amplitude of the periodic excitation signal was set at 20 mm. 

Figures 7–17 show the measurement results for each case. 

The black solid line indicates the vibration displacement of the 

mass block, the blue dotted line indicates the vibration 

displacement of the support base, and the red solid line 
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indicates the voltage of the vibration power generation. The 

voltage of the vibration power generation is positive because it 

is rectified by a diode bridge circuit. 

3.1. Excitation by Random Signal 

In the case of the random excitation shown in figure 7, the 

vibration response displacement of the mass block is relatively 

small, and the mass block vibrates mono-stably on the left side 

of the central axis. The voltage fluctuates randomly according 

to the change in the amplitude of the random vibration. The 

maximum voltage is 13.84 V, and the average is 2.73 V. There 

is no extremely large peak voltage value. 

 
Figure 7. Experiment results of vibration displacements and voltage excited only with random force. 

3.2. Excitation by Periodic Signal 

As shown in figure 8, the vibration displacement of the mass block when it is excited at a low frequency of 2.0 Hz is slightly 

larger than that of the support. The voltage value associated with a change in vibration displacement is relatively small, with a 

maximum value of 4.74 V and an average value of 2.55 V. 

 
Figure 8. Experimental results of vibration displacements and voltage excited with 2.0 Hz periodic forces. 

Figures 9–11 show the measurement results at frequencies 

of 2.3, 2.6, and 2.9 Hz. The maximum voltages are 7.92, 

16.32 and 14.44 V, and the average values are 4.37, 9.43 and 

8.50 V, respectively. There is an apparent natural vibration 

mode, and the mass block vibrates with an amplitude larger 

than that of the vibration displacement of the support. 

Compared to the results of the low-frequency (2.0 Hz) 

excitation, the voltage increases with increasing amplitude. 

When vibration is applied at a relatively high frequency (3.2 

Hz), as shown in figure 12, the amplitude and motion velocity 

decrease again, and the voltage value also to decreases. The 

maximum voltage is 12.04 V, and the average is 7.29 V. 

 
Figure 9. Experimental results of vibration displacements and voltage excited with 2.3 Hz periodic forces. 
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Figure 10. Experimental results of vibration displacements and voltage excited with 2.6 Hz periodic forces. 

 
Figure 11. Experimental results of vibration displacements and voltage excited with 2.9 Hz periodic forces. 

 
Figure 12. Experimental results of vibration displacements and voltage excited with 3.2 Hz periodic forces. 

3.3. Joint Excitation of Random and Periodic Signals 

Figure 13 shows the measurement results under 

simultaneous excitation by the random and periodic signals at 

a frequency of 2.0 Hz. The vibration displacement of the mass 

block is slightly larger than that of the support base, and the 

amplitude is a randomly fluctuating single-stable vibration. 

The maximum voltage is 13.84 V, and the average is 2.73 V. 

Figures 14–16 show the measurement results for the 

simultaneous excitation at 2.3, 2.6 and 2.9 Hz periodic external 

forces and random vibrations. The voltages values increased 

significantly, with maximum voltages of 44.85, 46.35 and 44.29 

V, and average values of 5.93, 9.08 and 9.49 V, respectively. The 

vibration displacement of the mass block increases significantly, 

and frequent bistable vibrations occur over the central axis, 

indicating stochastic resonance in this excitation frequency 

range. As a result, the predicted value of the excitation frequency 

in equation (23) agrees with experimental values. 

 
Figure 13. Experimental results of vibration displacements and voltage excited with random and 2.0 Hz periodic forces. 
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Figure 14. Experimental results of vibration displacements and voltage excited with random and 2.3 Hz periodic forces. 

 
Figure 15. Experimental results of vibration displacements and voltage excited with random and 2.6 Hz periodic forces. 

 
Figure 16. Experimental results of vibration displacements and voltage excited with random and 2.9 Hz periodic forces. 

 
Figure 17. Experimental results of vibration displacements and voltage excited with random and 3.2 Hz periodic forces. 

When the frequency of the periodic excitation signal is 

increased to 3.2 Hz, as shown in figure 17, the vibration of 

the mass block decreases, the bistable vibration disappears, 

and a single stable vibration state appears. The maximum 

voltage is 27.91 V, and the average is 7.14 V. 

3.4. Amplification Effect by Stochastic Resonance 

The amplification effect due to stochastic resonance is 

evaluated quantitatively, using the standard deviation of the 

vibration response displacement given by the following 
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equation: 

( )2

0

1

1
N

i

i

S x x
N =

= −∑              (24) 

where xi is the vibration displacement; x0 is the average value 

of the vibration displacement; and N is the number of sample 

points in the measurement experiment. Table 2 shows the 

standard deviation of the vibration displacement 

measurements. 

The vibration displacement of the supporting point is used 

as a reference for comparison. The amplification of the 

stochastic resonance is evaluated using the increase rate of 

the standard deviation of the vibration displacement as an 

evaluation index. 

As shown in Table 2, the average rate of increase of the 

displacement standard deviation when stochastic resonance 

does not occur is 186.64%. The average rate of increase of 

the displacement standard deviation when the stochastic 

resonance phenomenon occurs is 779.57%. The amplification 

effect due to stochastic resonance is very large. 

Table 2. Increasing rates of the motion response displacements under different vibrational states. 

Vibration signals Mass Base Increasing State 

Only random 11.92 4.45 167.64% 

Mono-stable Periodic only 

2.0 Hz 10.49 5.04 108.13% 

2.3 Hz 13.08 4.05 222.96% 

2.6 Hz 17.47 4.49 287.75% 

2.9 Hz 13.63 3.66 272.40% 

3.2 Hz 10.27 4.01 156.11% 

Random and periodic 

2.0 Hz 14.47 6.64 117.92% 

2.3 Hz 50.51 6.40 689.22% 

Bi-stable 2.6 Hz 57.15 5.95 860.50% 

2.9 Hz 54.94 6.18 789.00% 

3.2 Hz 16.22 6.23 160.35% Mono-stable 

 

3.5. Effect of Stochastic Resonance on Power Generation 

The vibration power generation is evaluated using the 

average electrical power given by the following equation: 

2
2

1

1
N

i

i

V t
W dt V

T R TR =

∆= = ∑∫          (25) 

where V is the voltage, R is the electrical load resistance of 

the circuit, Vi is the measured voltage, ∆t is the time step of 

the measurement, N is the number of samples of the 

measured value, and T is the total measurement time. Here, R 

is 1.0 MΩ, ∆t is 0.001 s, and T is 60 s. 

Table 3 shows the results of calculating the average 

electrical power W for each measured voltage value using 

equation (25). The vibration power generation is greatly 

increased due to the stochastic resonance. 

For comparison, the sum of the electric power (0.031 mW) 

under random signal excitation and the electric power (0.091 

mW) under periodic signal excitation at 2.6 Hz is 

0.031+0.091=0.122 mW. However, the electric power 

obtained by the two-signal excitation is 0.148 mW. 

Although the external excitation signal input is the same, 

the vibration electrical power generated by the two-signal 

excitation is approximately 21% larger than the sum of the 

vibration electrical power generated by separate excitations. 

Table 3. Comparison of the amount of vibration power generation under different vibrational states. 

Vibration signals Electrical power [mW] State 

Only random 11.92 

Mono-stable Periodic only 

2.0 Hz 10.49 

2.3 Hz 13.08 

2.6 Hz 17.47 

2.9 Hz 13.63 

3.2 Hz 10.27 

Random and periodic 

2.0 Hz 14.47 

2.3 Hz 50.51 

Bi-stable 2.6 Hz 57.15 

2.9 Hz 54.94 

3.2 Hz 16.22 Mono-stable 

 

4. Conclusion 

In this study, we proposed a new horizontal bi-stable 

vibration energy harvesting system, investigated its 

characteristics of stochastic resonance and vibration power 

generation, and obtained the following conclusions: 

A new vibration-energy-harvesting experimental device 

was developed using a horizontal bistable vibration system 

and piezoelectric elements. Stochastic resonance was 
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generated in the bi-stable vibration system by combining 

random and periodic excitations. An average amplification 

effect of 779.57% was obtained for the relative vibration 

response of the support point. 

The amount of electrical power generated when the 

random and periodic signals are simultaneously 21% higher 

than that generated when a single excitation is applied 

separately. It was found that stochastic resonance improved 

the efficiency of the vibration power generation. 

From the nonlinear equation of motion of the bi-stable 

oscillatory system, the potential energy distribution exhibited 

a well characteristic. It is shown that the proposed vibration 

model has bi-stable vibration characteristics. A prediction 

equation for the periodic excitation frequency that induces 

stochastic resonance was derived. As confirmed by the 

measurement experiment, the periodic frequency under the 

stochastic resonance agrees with the predicted value. 

The proposed bistable vibration system has a relatively 

simple structure. When used in a complex vibration 

environment, the motion of the mass block is guided by rails, 

which has the advantage of suppressing the perturbing effects 

of loads. This method can be used for developing future 

vibration-energy harvesting systems. 
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