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Abstract: This study determines the energy of a fatigue-loaded shaft of circular cross-section, in stable equilibrium, 

deflecting during rotation even in the absence of external loads. The shaft is subjected to completely reversed stresses as well 

as torsion and bending stresses varying with rotation and introducing fatigue loading problems. The research was conducted in 

order to establish equilibrium condition at which a shaft subjected to fatigue loading can operate without axial vibration 

problems, divergence buckling, and instability at critical or above critical speeds. When inertia slows the shaft to rest, where 

the energy goes usually causes the shaft to rattle. At rest, kinetic energy is zero at that point while potential energy is 

maximum. The stability status of the shaft can eliminate rattling. The energy method is used, in this study, to develop force-

displacement relations. It is also used to show that the total potential energy is minimum in the rotating shaft. Invoking the 

principle of minimum potential energy is a way to more easily derive the shaft energy related characteristics. The principle is 

used to analyze displacement and end points boundary conditions. Boundary conditions give prescription of displacements. 

The principle of virtual displacements and that of the minimum potential energy give the so-called stiffness (or displacement) 

method. The primary unknowns in that are the nodal displacements instead of the nodal forces. The strain-energy-density 

factor represents the strength of the elastic energy field in the vicinity of a crack-tip (with stress singularity) developed in the 

shaft. It was found that the energy which is a source of fluctuation in motion during shaft rotation was minimum when the total 

energy transferred to the shaft is minimum. 
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1. Introduction 

A shaft is a rotating or stationary member, usually of 

circular cross-section, and may be subjected to bending, 

tension, compression, and fatigue loads acting singly or in 

combination. It is an important element of a machine and can 

support other rotating parts or transmit energy and power. 

Shafts are made of steel. When high strength is required, an 

alloy steel such as nickel, nickel-chromium or chromium-

vanadium steel is used. The shaft originated from entire body 

of a long weapon composed of its pointed end and wearing 

portion, in the sixteenth century. This was extended generally 

to all bodies of long, cylindrical shape and an arrow (especially 

a long one, used with a long bow) in the fourteenth century. 

The mechanical sense, "long rotating rod for transmission of 

motive power and energy in a machine" and crank-shaft, shaft 

turned by a crank, appear to date from Roman times. 

In addition to these, (Langston, 2013) stated that fluid was 

used as turbine property to turn the blades of a rotor attached to 

a shaft to perform useful work. Yongsheng et al. (2018) 

investigated the effects of fiber orientation, ratios of length 

over radius, ratios of radius over thickness on rotating 

composite shaft. They used a thin-walled composite shaft 

structure model, which included the transverse shear 

deformation of the shaft, rigid disks and the flexible bearings. 

This was then used to predict natural frequencies and 

dynamical stability. Based on the thin-walled composite beam 

theory, the displacement and strain fields of the shaft were 

obtained. The results compared with those in the literature. 

Shafts are extensively applied in rotating machinery in 

different engineering sectors. Many researchers have 

investigated the vibration characteristics of rotating shaft-disk 

systems. The shaft behaves like a spring (and so, is a 

mechanical energy storage device) as it exerts force when 

deformed. Sokolnikoff (2016) rigorously proved the principle 

of minimum potential energy. The J contour integral expressed 

the strain energy density at the crack tip by using a line integral. 
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Kolsky (2003) found that if a crack is planar and propagating 

horizontally, at velocities which do not involve a consideration 

of crack inertia, it can be assumed to have a constant value of 

the gravitational potential energy, and so, the energy 

transferred is the strain energy stored in the body. Boulenouar 

et al. (2016) evaluated the kinking angle at each crack 

increment length, as a function of the minimum strain energy 

density (MSED) around the crack tip. The results showed that 

in the framework of linear elastic fracture mechanics (LEFM), 

the minimum values of the density are reached at the points 

corresponding to the crack propagation direction. Yoon & Rao 

(1993) applied minimum normal principle, similar to the 

principle of minimum potential energy, for the synthesis of 

cam motion. This involved the use of piecewise cubic 

functions for representing the follower displacement. The 

result showed smaller peak acceleration and jerk. Ginsberg 

(2019) states that mechanical energy is dissipated in an under-

damped free vibration. Energy is dissipated from one peak to 

the next. He determined the fraction of the mechanical energy 

dissipated in a cycle. In the absence of dissipation, the un-

damped shaft was conservative. Bagci (2007) developed a 

three-dimensional flexural shaft element for elastic analyses of 

power transmission shafts and geared systems. Basic stresses 

are defined using the maximum energy of distortion theory. He 

determined strength reducing factors by using generalized 

expressions and redefined the dimensions for the desired factor 

of safety. Cook et al (2009) used a very simple spring system 

to show that the total potential energy has two parts: the strain 

energy and the potential of loads. The load was regarded as 

acting at its full value and does work moving through its 

displacement. The result showed that the load, in so doing, lost 

potential energy equal to the work done. It was concluded that 

the potential energy was the total external and internal work 

done in changing the configuration from the reference state to 

the displaced state. Neal-Sturgess (2017) developed a crack tip 

stress wave unloading model, estimated the energy released 

under the moving unloading wave front, and relates it to new 

surface generation. Sanford (2013) stated that failure theories 

can be deduced from energy-based arguments. The local stress 

field at the crack tip enters the formulation indirectly through 

its influence on the strain energy. In this study, the shaft 

dynamic loads are simulated for equilibrium, and shown to be 

affected by shaft properties such as stiffness (K) and inertia (J). 

Shigley & Mitchell (1993) stated that a shaft is a rotating or 

stationary member usually of circular cross-section, and may 

be subjected to bending, tension, compression, and fatigue 

loads acting singly or in combination. Bannantine et al. (2021) 

used unloading and reloading at a point in the plastic region of 

the stress-strain diagram to show that stress-strain response, 

demonstrated that the area under the hysteresis loops 

accounted for the energy involved. Reifsnider and Talug (2020) 

generated data dealing with various details of the process of 

damages that combine to produce a damage state which 

controls the state of strength of the degraded composite. The 

task of Hayes (2019) on factor of safety determination showed 

factor of safety separately for uncertainties that occur in the 

strength of the shaft and the uncertainties that may occur with 

load acting on it. This was done by producing a known load 

and noting that an estimated overload could be applied. 

2. Materials and Methods 

The selection of the material for this study is based on the 

attributes such as fatigue strength, and ductility [12]. 

2.1. Modelling 

To fill the research gap of the existing modelling approach, 

the present study developed a unified modelling method for 

flexible shaft with general boundary conditions, by taking 

into consideration rotation-induced load. The composite shaft 

rotating along its longitudinal axis at a rate,�s, is shown in 

Figure 1. The assembly consists of a motor of power source 

connected by flexible shaft to the load. 

 

Figure 1. Shaft rotated by a motor. 

In the configuration of the shaft, displacement, u = 0 

before it was rotated. 

When the shaft is in this static equilibrium position the 

potential energy was zero and the kinetic energy was a 

maximum. When deformed elastically by some system of 

applied loads, it always returned to its natural state when the 

loads are removed [8]. Then the strain energy density was 

positive. The shaft has geometrical characteristics as 

diameter, length, thickness, and radius of curvature. The 

structural modelling was based on the assumption that the 

shaft is characterized as a slender thin-walled elastic cylinder, 

satisfying d≪L, h≪d, h≪r, where L, h, r and d denote the 

length, thickness, radius of curvature and the maximum cross 

sectional dimension of the cylinder, respectively. 

The torsional load is applied from the motor with specified 

power and speed capacities to be met [14]. There is 

concentration of deflections close to the region where the 

shaft and the bushings contact each order. Symbolically, the 

model assembly is represented by a mass-spring-damper, as 

shown in Figure 2. 

 
Figure 2. Mathematical Model. 

Let �m, �s, �L be rotations of the motor, the shaft, and the 

load, respectively. Using standard procedures of analysis, the 

governing differential equations for the rotation give: 

Jmθ�  + C (��m - ��L) + K (�m-�L) = Tm                  (1) 

JLθ�  + C (��L - ��m) + K (�L- �m) = - TL                (2) 
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where Jm and JL are the polar area moments of inertia of the 

motor and of the load, respectively. It is given by � ��dA, (r 

and A being shaft radius and area, respectively). The 

quantitative measure of J is the mass of the shaft. C is the 

damping coefficient. It represents friction (viscous, sliding, 

or any combination of the two). K is the stiffness of the shaft. 

It describes the magnitude of the force that bends the shaft a 

unit distance when applied [5]. In Equations (1) and (2), the 

functions are associated with physical behaviour for the axial 

strain, the bending curvatures, and the torsion twist rate [1]. 

They are used effectively for the analysis of tubular thin-

walled structures. So, the shaft is a mechanical energy 

storage devise as it is spring-like and so has a spring constant, 

K. The over-dots indicate time differentiation. In this work, 

torque reactions are provided by Eqs. (1) and (2) ensuring 

that the shaft will work well. To maintain equilibrium, the 

bushing resists the torque [6]. To determine the rotating 

shaft’s dynamical characteristics, this approach is carried out 

here to approximate the motion equations by a system of 

ordinary differential equations. Based on these approximate 

equations, the dynamical characteristics of the rotating shaft 

systems can then be calculated [13]. 

2.2. Energies Involved 

The principle of minimum potential energy is such that out 

of all possible displacement fields that satisfy the geometric 

boundary conditions (i.e. the prescribed displacements), the 

one that also satisfies the equations of static equilibrium 

results in the minimum total potential energy of the shaft [4]. 

The sum of two different types of potential energy; that 

associated with the internal potential energy Ui (i.e. the strain 

energy) and that associated with the external potential energy 

Ue (i.e. from the external forces that act on the system), gives 

the total potential energy of the shaft, 

II = Ui + Ue                                 (3) 

It is the potential energy stored by the shaft when it is 

deformed through the distance u, and is defined by the 

average force times the deflection. 

2.2.1. The Strain Energy 

If the strain energy density is independent of the path 

followed in the strain space [3], the deformation of the shaft is 

hyper-elastic. In this project, the external work done on the 

elastic shaft in deforming it is transformed into strain or 

potential energy. The strain energies associated to this work 

(on rotating the shaft) are those of bending and shear. Some of 

the energies introduced into the shaft by the work done by 

displacements (deflections) in this operation, are not stored as 

strain energy, but are dissipated as the driving force for the 

internal process of crack growth [11]. The strain energy is the 

source of energy for crack propagation and is released as the 

crack extends. Since the strain energy decreased as the crack 

extended, this energy became available to the crack. The 

growth of crack results in surface energy. The surface energy 

is a well-defined measurable property of the material. Surface 

energy is a candidate receptor for the loss of strain energy 

since new surfaces were created as the crack extends. The 

crack growth process continues as long as the rate of released 

strain energy extends the energy required to form a new 

surface. The work-energy theorem is used here to analyse 

rotation to find the work done on the system when it is rotated. 

2.2.2. Mechanical Energy 

This is dissipated in the under-damped free vibration. The 

non-conservative deformation process indicated that the 

loading history of an element of material in the 

neighbourhood of the deformation is different in the loading 

phase from the unloading phase so that a certain amount of 

energy is dissipated in the cyclic deformation process [2]. 

The mechanical energy E ≡T (kinetic energy, the energy 

stored in the rotating shaft with moment of inertia J and 

angular velocity �s) + V (potential energy, corresponding to 

the peak values) is stored as potential energy. It is dissipated 

from one peak to the next (dissipated energy in a friction 

element with angular velocity). So, the fraction of the 

mechanical energy dissipated in a cycle can be determined 

[15]. In this study, with each damped cycle, a fraction of 

mechanical energy is lost to damping. In the absence of 

dissipation, the shaft is un-damped and conservative. The 

mechanical energy (T + V) is therefore constant. The shaft’s 

inertia causes it to continue past the equilibrium position. 

Acting as a spring (and so spring constant, K) this property 

returns the shaft mass equilibrium by slowing it until it 

comes to rest at the maximum displacement. The kinetic 

energy is zero at that position and the potential energy is a 

maximum corresponding to maximum spring deformation [9]. 

The vibration continues periodically, with frequency because 

there is no damping to dissipate the mechanical energy. The 

damage evolution of fatigue hysteresis dissipated energy, and 

fatigue hysteresis modulus, fatigue peak strain, interface 

shear stress can be analysed [5]. 

For conservative force systems, the loss in the external 

potential energy during the loading process must be equal to 

the work done, We, on the system by the external forces, thus 

- Ue = + We = - Fu                                  (4) 

where F is the force acting in full value, and u is the 

displacement. So, this represents the potential of loads as 

well. 

Eq. (3) becomes II = Ui + We                       (5) 

This is the total internal and external work done in 

changing the configuration from the reference state of u = 0 

to the displaced state u ≠ 0. Since the total potential energy, 

II is afunction of functions (the strain and displacement 

functions), it is a functional. In order to minimize II, we insist 

that the first variation of the total potential energy be zero, 

that is, 

�II = �Ui + -�We = 0                            (6) 

or 

�Ui =�We                                   (7) 
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where �Ui is the first variation in the strain energy (as a 

result of the variation in the strain). With K as the stiffness of 

the shaft, 

Ui =
�
�KD

2
                                     (8) 

Equation (3) becomes 

II = 
	�
�Ku

2
- Fu                                 (9) 

The rotational potential energyUi is stored in a rotational 

shaft with spring constant K and deflection u [7]. The 

equilibrium configuration, ueq is found from the stationary 

value of II. 

dII = (kueq - F)du = 0 → ueq = 
�
�                   (10) 

Displacement fields satisfying the equations of static 

equilibrium, Eqs. (10), result in the minimum total potential 

energy of the shaft. 

2.3. Simulation 

Simulation is accomplished by applying a standard 

maximum deflection of 0.2 mm at the middle of the shaft, 

and then varied. The distance between bearings can also 

influence lateral deflection. The critical sections of the shaft 

in this project (the sections with abrupt change in cross-

section), Figure 1, were considered. They are subjected to the 

motor torque, the load torque, and flexing action. The 

geometry of the shaft influences the flexural endurance. The 

product of its elastic modulus, E and the planar moment of 

inertia I, i.e. EI, gives the shaft its flexural rigidity. Bubbles, 

voids, and contamination are eliminated from the shaft 

expected to perform in this demanding flex applications. 

Each of these defects can become the nucleus of failure (due 

to crack action) after the part has been subjected to flexing 

action. Fatigue life analysis model based on classical fracture 

mechanics (using APDL, ANSYS Parametric Design 

Language) code gives estimate of remaining fatigue life [10]. 

The flexural moment is negligible as bending fatigue strength 

is not affected by the existence of torsional mean stress until 

the torsional yield stress is exceeded by about 50% (Sines and 

Waisman, 1959). In this work, application of a factor of 

safety helped the shaft to sustain the minimum energy level. 

2.4. Energy Method for Force-Displacement Relations and 

Boundary Conditions 

In this work, the shaft is modelled to have specific force-

displacement relations and a standard varying deflection. For 

example, it exerts a force when deformed. Boundary 

conditions are constraints necessary for the solution of a 

boundary value problem on whose boundary, a set of 

conditions is known. Equating internal work to external work, 

�
��IIp = 

�
��[-Fu + 

��
�� u2

] = 0                       (11) 

[-F + 
��
� u] = 0 → P = 

��
� u                       (12) 

Equations (11) and (12) represent the force- displacement 

relations of the rotated shaft in equilibrium. 

In this study, displacement in the element is defined as ui, 

and uj, the possible displacement fields that satisfy the 

geometric boundary conditions. Assuming 

u = a1 + a2x 

u = (1 - 
�
�	)ui + (

�
�	)uj                          (13) 

where x and L define the boundary conditions of the shaft length. 

Knowledge of deformations is specified in terms of strains, that 

is, the relative change in the size and shape of the body. Poisson 

ratio gives the ratio of transverse strain to axial strain. The 

deformation resulted from stress. One reason for this is that the 

steel is used within its design limit, i.e. proportional limit (before 

yield). In that region, axial strain is proportional to lateral strain. 

In compression, the deformation of the steel material stressed 

along (in the direction of) one axis produced a deformation of 

the material along the other axis in three dimensions. Summing 

strain energy at a point for the element, 

ui = � ��
�

�
� (

��
����dx                              (14) 

Substituting u = (1 - 
�
�	)ui + (

�
�	)uj into ui and integrating: 

ui = 
��
��  [ui

2
 -2uiuj + uj

2
] 

ui = 
��
	�� � 	1 �1

�1 	1  !"#"$} = %&#
&$}                  (15) 

This is strain energy in terms of stiffness (or displacement) 

method. The solution is based on prescribed displacement 

fields. Since the stiffness matrix, Equation (15), is correct, 

the geometric boundary condition is satisfied. Satisfying the 

condition establishes stable equilibrium and minimum 

potential energy [6]. 

 
Figure 3. Minimum potential energy, from Cook et al. (2009). 

The principle of minimum potential energy requires that 

the total potential energy, II be a minimum for stable 

equilibrium. 

In Figure 3, Cook et al. plotted minimum potential energy 

with dotted lines. Minimum potential energy falls below the 
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displacement axis. 

3. Results and Discussion 

The energy transformed via the shaft into kinetic energy is, 

in turn, converted into force (KD) on the load mounted on the 

shaft. The ability of the motor to generate a rotary motion on 

the shaft that transmits kinetic energy to drive the load made 

the shaft suitable for this operation. 

In the dynamics study, the rotating shaft was represented 

as a thin-walled structure of circular cross-section. Consistent 

with the study the effect of increase in stiffness and tension, 

the high stiffness of the steel initially resulted in any effect 

from torsional vibration to be negligible. The stiff material 

has a higher elastic modulus and deflects the effect of 

vibrational waves better. However, the stiffness decreased as 

deflection increased. 

3.1. Torque Reaction Provided by the Model 

The equilibrium conditions are satisfied by the following 

dynamic equations: 

Jmθ
�  + C (��m - ��L) + K (�m-�L) = Tm 

JLθ
�  + C (��L - ��m) + K (�L- �m) = - TL 

3.2. Resultant Forces 

In solids, the work done by external loads is stored as 

recoverable strain energy. For deformable elastic bodies 

under loads, the strain energy stored in the body per unit 

volume is then defined clearly. 

Table 1. External Potential Energy Related to Displacement. 

External Potential Energy Ue ( - 

Fu) 
Displa-cementu Force P (Ku) 

- 0.12 0.02 5.81 

- 0.23 0.04 11.62 

- 1.05 0.06 17.43 

- 1.86 0.08 23.24 

- 2.90 0.10 29.04 

In Table 1, as displacement increased, external potential 

energy decreased. This is due to the fact that the load F (the 

bearing force) is always acting at full value. In moving 

through the displacement u, it does work in the amount Fu. In 

so doing it loses potential of equal amount, and that means 

negative Fu (or – Fu), as shown in Table 1. 

Table 2. Displacement Relation to Internal Energy ( 
�

�
kD2). 

Displacementu (mm) Strain EnergyUi 

0.02 0.06 

0.04 0.23 

0.06 0.52 

0.08 0.93 

0.10 1.45 

Table 2 shows that displacement also increases with 

increasing internal energy. 

Table 3. Total Potential Energy and Displacement. 

Total PotentialEnergyIIp ×103 Displacementu 

0.00 0.00 

- 0.06 0.02 

0.00 0.04 

0.53 0.06 

0.93 0.08 

1.45 0.10 

In table 3, displacement increased from 0.00 to 0.02 with 

decreasing total potential energy. After, that total potential 

energy increased with increasing displacement. At 0.04 

displacement, the total potential energy came to zero and 

continued to increase to positive values. Therefore, the 

minimum potential energy of -0.6 resulted at 0.02 

displacement. The minimum potential energy results 

obtained in this work correlates with those of Cook et al. 

(2009), as shown in Figure 3. 

4. Conclusion 

From the present analysis, the following main conclusions 

can be obtained: 

1) The total potential energy of the shaft has two parts, the 

strain energy and the external potential energy. 

2) The displacement at which the total potential energy is 

minimum was the equilibrium displacement (i.e. 0.02). 

At this event, the equilibrium state is stable. 

This paper deals with the structural modelling and dynamical 

analysis of a rotating shaft. Simulations of the effects of the 

various parameters including geometric dimension and the 

transverse shear deformation on frequencies and critical rotating 

speeds were performed. The analytical model developed in this 

study can be used to highlight the dynamic behaviour of a 

rotating shaft system. The present model can further be extended 

to incorporate the effects of internal damping of a shaft for 

evaluating the dynamic instabilities due to internal damping. 

This has been an improvement. 
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