
International Journal of Mechanical Engineering and Applications 

2024, Vol. 12, No. 1, 2024, pp. 18-31 

https://doi.org/10.11648/j.ijmea.20241201.13  

 

 

*Corresponding author:   

Received: 6 January 2024; Accepted: 1 February 2024; Published: 21 February 2024 

 

 

 
 

Copyright: © The Author(s), 2024. Published by Science Publishing Group. This is an Open Access article, distributed 

under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0/), which 

permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

 

Research/Technical Note 

Design of Multi-Input Multi-Output Non-linear Model 

Predictive Control for Main Steam Temperature of Super 

Critical Boiler 

Sumanta Basu
1, *

, Sushil Cherian
2
, Jisna Johnson

2
 

1
L&T MHI Power Boilers Private Limited, Faridabad, India 

2
Kalki Communication Technologies Pvt Ltd, Ernakulam, India 

 

Abstract 

Flexible operation of coal-fired power plants is becoming increasingly necessary for successful integration of large-scale 

renewable power generation into the power grid. The maximum ramp rate and the number of load cycles are generally limited by 

the thermal stress experienced by the boiler pressure parts, turbine metallurgy and creep and fatigue of critical thick-walled 

components Main steam temperature is a critical operating parameter that must be controlled within acceptable limits for safe 

operation. Main steam temperature deviation beyond acceptable limit has impact on boiler pressure parts and turbine material of 

construction due to creep and fatigue effect. Base load operating units do not require steep ramp rate and hence recommended 

ramping rates are kept low within the safe operating zone in comparison to the flexible operation of the units with wide range 

load change width. Thermal stresses are caused by the temperature changes inside the thick-walled components and turbine 

steam admission parameters. Hence, the quality of main steam temperature control plays a vital role in flexible operation of the 

coal fired units. Conventional cascaded PID temperature control loop architecture performs well at steady state condition within 

a limited variation of load change at low ramp rate but it acts slowly and performs poorly at transient operating conditions of 

flexible operation of the boiler turbine with wide range load variation and load cycle with high ramp rate and remains far from 

rated conditions. In this paper, a Multi-Input Multi-Output (MIMO) Non-linear Model Predictive Control (MPC) design for 

regulation of the main steam temperature of a Once-Through supercritical Boiler is proposed. The controller is based on a 

non-linear dynamic model which incorporates dynamics of the variables of interest. It has the capability to operate effectively 

across a wide load range while maintaining main steam temperature within acceptable limits. A notable advancement in this 

design of MPC is the incorporation of coal flow demand and feedwater flow demand as additional control inputs alongside 

primary and secondary spray flows. In simulation test cases, the MPC controller demonstrates satisfactory performance and 

computational efficiency. 
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1. Introduction 

The boiler turbine unit plays a critical role in thermal power 

plants by converting the chemical energy of fuel into me-

chanical energy and then into electrical energy. The boiler 

produces high-pressure and high-temperature steam, which 

drives the turbine to generate electricity. Precise regulation of 

the electric power output of the boiler-turbine system is nec-

essary to meet grid and load demands, while maintaining 

internal variables such as steam pressure and temperature 

within the desired range. Ensuring reliable control of super-

heated steam temperature is essential for the efficient and safe 

operation of coal-fired thermal power plants. 

Various control strategies have been developed to achieve 

these objectives, ranging from the early Model Predictive 

Heuristic Control (MPHC) introduced in 1978 [1], to the 

widely used Proportional–Integral–Derivative (PID) control 

scheme [2]. Although PID control, often implemented as cas-

cade control, has been successful in many industrial applica-

tions, it has limitations when applied to Multiple-Input Multi-

ple-Output (MIMO) systems. Therefore, more advanced con-

trol strategies such as Model Predictive Control (MPC) have 

been chosen for nonlinear and highly complex systems like the 

boiler-turbine unit. MPC refers to a class of computer control 

algorithms that utilize an explicit process model to predict the 

future response of a plant. At each control interval, the MPC 

algorithm optimizes future plant behaviour by calculating a 

sequence of future manipulated variable adjustments [3]. Other 

algorithms, such as Dynamic Matrix Control (DMC) [4, 5] and 

Generalized Predictive Control (GPC) [6], have also been 

proposed. Nonlinear model predictive control, coupled with 

successive online model linearization and quadratic optimiza-

tion, shows promise [7, 8]. Fuzzy Model Predictive Control 

with hierarchical MPC architecture, which approximates non-

linear characteristics with a linear feedback controller, has also 

shown advancements [9]. Another significant milestone in 

recent years is the development of closed-loop robust MPC 

with bi-level optimization for boiler-turbine system control, 

addressing uncertainties [10]. 

In this paper, the control of superheated steam temperature in 

a Once Through Boiler (OTB) unit, through a nonlinear MIMO 

process implemented with MPC. MPC is a control algorithm 

that calculates control inputs based on the predicted behaviour 

of process outputs over a time horizon. The algorithm calcu-

lates future control inputs to minimize the difference between 

predicted control outputs and set point values over the predic-

tion horizon. Only the first calculated control input is applied in 

each calculation step. This process is repeated at subsequent 

sampling times with prediction horizons of the same length but 

shifted one step forward. This concept is known as the principle 

of a receding horizon [11]. 

The aim of this study is to propose an MPC design for tem-

perature control of the boiler turbine system. The paper is orga-

nized as follows: Firstly, we provide a description of the OTB 

unit under investigation, followed by a detailed explanation of its 

dynamic mathematical model using available design data. Sub-

sequently, the process model based on this information is simu-

lated under different scenarios for validation. We outline a gen-

eral MPC framework and elaborate on the MPC specifications of 

our model. The control performance of the proposed MPC is 

demonstrated through various simulated test cases. Finally, we 

conclude by observing that MPC exhibits good set point tracking 

and smooth control. 

 
Figure 1. Diagram of once through boiler section. 
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2. OTB Unit Description 

In this research, a comprehensive analysis of a 660 MW 

Once Through Boiler Turbine (OTBT) pulverised coal-fired 

unit, situated in India, is conducted. At its core, the unit con-

sists of an ultra-supercritical sliding-pressure once-through 

boiler. This steam is channelled into an ultra-supercritical 

single reheat condensing steam turbine, a critical component 

ensuring the conversion of thermal energy into mechanical 

work. 

The primary focus of this study lies in the development of a 

robust control strategy, supported by meticulous parameter 

identification using authentic operational data. This approach, 

grounded in empirical evidence and advanced analytical 

techniques, paves the way for the successful implementation 

of Model Predictive Control (MPC) during the operational 

phase of the plant. 

The simplified structure diagram of a 660 MW USC OTBT 

coal-fired unit is portrayed in Figure 1 [12]. 

3. Dynamic Mathematical Model 

The development of a mathematical model for the sys-

tem involves deriving equations based on fundamental 

principles, such as conservation laws or physical laws 

governing the system's behaviour and utilizing grey-box 

modelling technique. The nonlinear model evolved after 

parameter identification and function fitting is relatively 

simple and provides a quantitative representation of the 

system, facilitating the analysis and prediction of its dy-

namic response. It serves as a valuable tool for simulation 

studies, control system design, and optimization. By ma-

nipulating the model equations, we can explore different 

scenarios, investigate system behaviour under varying 

conditions, and evaluate the effectiveness of different 

control strategies. 

The model structure is described herein as a set of differ-

ential algebraic equations (1) (DAEs) [12]. The state variables, 

output variables, control inputs, parameters, and nonlinear 

functions associated with the system outlined below are also 

summarized in Tables 1 and 2. 

𝑑𝑥1

𝑑𝑡
= (

−1

𝑐0
) 𝑥1 + (

1

𝑐0
) 𝑢1          (1) 

𝑑𝑥2

𝑑𝑡
= (

ℎ𝑓𝑤−𝑑11

𝑐11
) (𝑢2 − 𝑢4 − 𝑢5) + (

𝑑11−ℎ5

𝑐11
) 𝑓2𝑢3 + 𝑘11 (

𝑥1

𝑐11
)  

𝑑𝑥3

𝑑𝑡
= (

ℎ𝑓𝑤−𝑑12

𝑐12
) (𝑢2 − 𝑢4 − 𝑢5) + (

𝑑12−ℎ5

𝑐12
) 𝑓2𝑢3 + 𝑘11 (

𝑥1

𝑐12
)  

𝑑𝑥4

𝑑𝑡
= 𝐷3 (

ℎ4−𝑥4

𝑐2
) + 𝑘12 (

𝑥1

𝑐2
)  

𝑑𝑥5

𝑑𝑡
= (

ℎ2−𝑑21

𝑐31
)𝐷2 + (

𝑑21−𝑥6

𝑐31
) 𝑓1𝑢3 + 𝑘13 (

𝑥1

𝑐31
)  

𝑑𝑥6

𝑑𝑡
= (

ℎ2−𝑑22

𝑐32
)𝐷2 + (

𝑑22−𝑥6

𝑐32
) 𝑓1𝑢3 + 𝑘13 (

𝑥1

𝑐32
)  

𝑑𝑥7

𝑑𝑡
= (

𝑥7

𝑐4
) + 𝑘2 (

𝑥6−ℎ𝑓𝑤

𝑐4
) 𝑓1𝑢3  

𝑑𝑥8

𝑑𝑡
= (

−1

𝑐0
) 𝑥8 + (

1

𝑐0
) 𝑢2  

𝑕𝑓𝑤 = 𝑕1(𝑥1) 

𝑕𝑠𝑤1 = 𝑕2(𝑥1) 

𝑕𝑠𝑤2 = 𝑕3(𝑥1) 

𝑕5 = 𝑙𝑥3 

𝑃5 = 𝑥2 − 𝑔1 

𝑃3 = 𝑥2 − 𝑔2 

𝐷5 = 𝑓2𝑢3 

𝐷4 = 𝐷5 + 𝑢4 

𝑕4 =
𝐷5ℎ5+𝑢4ℎ𝑠𝑤1

𝐷4
  

𝐷3 = 𝐷4 

𝐷2 = 𝐷3 + 𝑢5 

𝑕2 =
𝐷3𝑥4+𝑢5ℎ𝑠𝑤2

𝐷2
  

𝑦1 = 𝑥5  

𝑦2 = 𝑥3 

𝑦3 = 𝑥7 

𝑦4 = 𝑇1(𝑥2, 𝑥4) 

𝑦5 = 𝑇2(𝑥5, 𝑥6) 
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Table 1. Variables of dynamic mathematical system. 

Variables Symbol Description 

State 

𝑥1  Coal Flow 

𝑥2  Water Separator Pressure 

𝑥3  Water Separator Enthalpy 

𝑥4  Platen Superheater Enthalpy 

𝑥5  Main Steam Pressure 

𝑥6  Main Steam Enthalpy 

𝑥7  Load 

𝑥8  Feedwater Flow 

Output 

𝑦1  Main Steam Pressure 

𝑦2  Water Separator Enthalpy 

𝑦3  Load 

𝑦4  Platen Superheater Temperature 

𝑦5  Main Steam Temperature 

Control 

𝑢1  Coal Flow Demand 

𝑢2  Feed Water Flow Demand 

𝑢3  Throttle Valve Opening 

𝑢4  Primary Spray Water Flow 

𝑢5  Secondary Spray Water Flow 

Table 2. Parameters of dynamic mathematical system. 

Static Parameters Dynamic Parameters Non-linear functions 

𝑕𝑓𝑤
𝑕𝑠𝑤1
𝑕𝑠𝑤2
𝑘11
𝑘12
𝑘13
𝑘2
𝑙

  

𝑐0
𝑐11
𝑐12
𝑑11
𝑑12
𝑐2
𝑐31
𝑐32
𝑑21
𝑑22
𝑐4

  

𝑓1
𝑓2
𝑔1
𝑔2
𝑇1
𝑇2

  

𝑕1
𝑕2
𝑕3

  

For parameter identification and nonlinear regression of the model, steady state data of variables at various loads is required. In 

this regard, we utilize the design data available for analysis as presented below in Table 3. 
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Table 3. Design data at various operating points. 

𝑵𝒆 (MW) 693 660 528 396 330 

   (kg/s) 116.94 111.67 91.39 71.39 61.39 

𝑃𝑚 (MPa) 29.01 28.76 23.08 17.55 14.83 

𝑕𝑚 (kJ/kg) 2700.97 2710.51 2796.43 2811.22 2821.18 

𝑕3 (kJ/kg) 3324.68 3326.49 3400.75 3448.79 3475.93 

𝑝𝑠𝑡 (MPa) 26.48 26.48 21.28 16.18 13.63 

𝑕𝑠𝑡 (kJ/kg) 3489.01 3489.01 3536.14 3580.95 3602.78 

𝐷𝑓𝑤 (kg/s) 544.44 513.61 405.28 303.61 254.72 

𝑢  (kg/s) 116.9 111.6 91.39 71.39 61.39 

𝐷𝑠𝑤1 (kg/s) 13.61 12.86 14.19 10.64 8.92 

𝐷𝑠𝑤2 (kg/s) 13.61 12.86 14.19 10.64 8.92 

𝐷𝑠𝑡 (kg/s) 544.4 513.6 405.2 303.61 254.72 

𝑇𝑠𝑡 (Deg C) 603 603 603 603 603 

𝐷5 (kg/s) 517.22 487.8 376.8 282.33 236.89 

𝑕5 (kJ/kg) 2899.6 2881 2932 2944 2950.15 

𝑃5 (MPa) 28.41 28.21 22.64 17.21 14.55 

𝑃3 (MPa) 27.96 27.8 22.31 16.99 14.36 

𝑕𝑓𝑤 (kJ/kg) 1350.7 1328 1260 1181 1133.32 

𝑕𝑠𝑤 (kJ/kg) 1544.3 1521 1444 1378 1348.25 

𝑇3 (Deg C) 556 556 560 557 557 

 

3.1. Estimation of Static Parameters 

A total of 8 static parameters 

𝑕𝑓𝑤 , 𝑕𝑠𝑤1, 𝑕𝑠𝑤2, 𝑘11, 𝑘12, 𝑘13, 𝑘2  and 𝑙  need to be identified 

in this system. Static parameters used in the model are cal-

culated from the steady state running of data and nonlinear 

regression analysis [12]. The parameters that have been fitted 

are as follows: 

𝑕𝑓𝑤 = 𝑕1(𝑥1) = 375.08𝑥1
0.2686          (2) 

𝑕𝑠𝑤1 = 𝑕2(𝑥1) = 561.35𝑥1
0.2113

𝑕𝑠𝑤2 = 𝑕3(𝑥1) = 561.35𝑥1
0.2113          (3) 

𝑙 = (1.4 × 10−5)𝑥1
2 − 0.002095𝑥1 + 1.122232   (4) 

Table 4 below lists the determined values of 𝑘11, 𝑘12, 𝑘13 

and 𝑘2 parameters at various load conditions. 

 

Table 4. Values of 𝑘11, 𝑘12 , 𝑘13 and 𝑘2 at different loads. 

Load (MW) 𝒌𝟏𝟏  𝒌𝟏𝟐  𝒌𝟏𝟑  𝒌𝟐  

693 6840.04 2112.2 973.238 0.5945 

660 6802.2 2124.209 955.46 0.5955 

528 6900.91 2223.99 902.299 0.5728 

396 6951.02 2328.16 869.96 0.5434 

330 7025.99 2323.5 836.59 0.5248 

The above data fits quadratic equations for 𝑘11, 𝑘12, 𝑘13 

and 𝑘2 as stated subsequently, 

𝑘11 = 7524.247 − 10.66722𝑥1 + 0.03986892𝑥1
2   (5) 

𝑘12 = 2373.388 + 1.25306𝑥1 − 0.03049282𝑥1
2    (6) 

𝑘13 = 741.1336 + 1.258423𝑥1 + 0.006044255𝑥1
2   (7) 
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𝑘2 = 0.3491689 + 0.003678727𝑥1 − 0.00001338697𝑥1
2 (8) 

Based on steady-state simulations, it has been observed that 

𝑘11  influences 𝑥3, 𝑘12  affects 𝑥4, 𝑘13  has an impact on 𝑥6 

and 𝑘2 influences 𝑥7.. 

3.2. Estimation for Dynamic Parameters 

The determination of dynamic parameters is pivotal for 

ensuring the accuracy and effectiveness of the mathematical 

models employed. In this study, the focus was on 11 dynamic 

parameters 𝑐0, 𝑐11, 𝑐12, 𝑑11, 𝑑12, 𝑐2, 𝑐31, 𝑐32, 𝑑21, 𝑑22 𝑎𝑛𝑑 𝑐4. 

Experimental data from load swing tests of the 660 MW 

unit was utilised for parameter estimation. The method con-

sists of minimising a least squares objective function defined 

over the difference between the model predicted values and 

observed data. The optimization process was guided by a set 

of box-constrained parameters, ensuring the optimization 

remained within realistic boundaries aligned with the physical 

constraints of the system. 

Subsequently, a cost function is formulated, which inter-

nally invokes the Ordinary Differential Equation (ODE) 

solver to generate solutions for comparison against the em-

pirical data. To quantify the disparity between model predic-

tions and actual data, we employ an optimized version of the 

L2 distance, serving as our loss function. 

This approach allows simultaneous estimation of multiple 

parameters and is implemented in the Python programming 

language Leveraging the library’s specific algorithms, we opti-

mize these parameters starting from an initial guess, informed by 

prior experience or expert opinion. Furthermore, our methodol-

ogy allows for the specification of upper and lower parameter 

bounds, in addition to initial guess, all of which are incorporated 

into the optimization function. Consequently, the optimization 

process yields the below mentioned parameter values that best 

align with the empirical data. 

𝑐0 = 152, 𝑐11 = 110475, 𝑐12 = 197128  

𝑑11 = 103, 𝑑12 = 2004, 𝑐2 = 89912, 𝑐31 = 2667932  

𝑐32 = 44805, 𝑑21 = 236, 𝑑22 = 3001, 𝑐4 = 10    (9) 

3.3. Estimation of Non-linear Functions 

Nonlinear functions involved in our system can be esti-

mated with the aid of following equations at the steady state 

[12]. 

𝑓1 =
𝐷5

𝑢𝑡
                 (10) 

𝑓2 =
𝐷𝑠𝑡

𝑢𝑡
                 (11) 

𝑔1 = (𝑥2 − 𝑃5) 1000⁄

𝑔2 = (𝑥2 − 𝑃3) 1000⁄
          (12) 

Consequently, suitably fitting the functions 𝑓1, 𝑓2, 𝑔1  and 

𝑔2 as, 

𝑓1 = 4985.00315𝑥5 (0.0619873𝑥6 − 128.448)⁄      (13) 

𝑓2 = 2621.9901 (0.0587𝑕5 − 117.69)⁄       (14) 

𝑔1 = 2.9897 × 10−7𝑥2
2 + 0.00000748𝑥2 + 0.0001  (15) 

𝑔2 = 4.4353 ∗ 10−7𝑥2
2 + 0.000018 + 0.000105   (16) 

For the calculation of the steam temperature 𝑇3 and 𝑇𝑠𝑡 , 

we have adopted a bilinear fitting method. In this regard we 

define, 

𝑇1(𝑃5, 𝑕5) = 𝜅1(𝑝5
2) + 𝛽1𝑃5 + 𝛾1

𝑇2(𝑃𝑠𝑡 , 𝑕𝑠𝑡) = 𝜅2(𝑝𝑠𝑡
2 ) + 𝛽1𝑃𝑠𝑡 + 𝛾2

       (17) 

where the intermediate functions are identified as, 

𝜅1 = −1.292 ∗ 10−7𝑥4
2 + 0.000980 ∗ 𝑥4 − 1.878

𝛽1 = 6.5093 ∗ 10−6𝑥4
2 − 0.0524 ∗ 𝑥4 + 108.138

𝛾1 = 1.8054 ∗ 10−5𝑥4
2 + 0.335 ∗ 𝑥4 − 887.064

𝜅2 = −1.15034 ∗ 10−7𝑥6
2 + 0.000878 ∗ 𝑥6 − 1.6941

𝛽2 = 6.31422 ∗ 10−6𝑥6
2 − 0.0509 ∗ 𝑥6 + 105.32

𝛾2 = 3.9667 ∗ 10−6𝑥6
2 + 0.4311 ∗ 𝑥6 − 1050.743

 (18) 

4. Process Model Validation 

An algorithmic framework can be devised to implement the 

process model simulation in the Python programming lan-

guage, considering the complex system of equations de-

scribed above. This entails the handling of both differential 

equations and algebraic equations, resulting in a higher index 

differential algebraic system of equations (DAEs) as given in 

(1). Through meticulous index reduction techniques and 

subsequent structural simplifications, the DAEs can be 

transformed into a system of ordinary differential equations 

(ODEs) amenable to numerical solution using readily availa-

ble solvers within diverse software environments. Numerous 

sophisticated numerical integration methodologies exist, 

designed to accommodate the inherent stiffness of equations 

encountered in practice. However, the selection of an appro-

priate integration technique necessitates a judicious balance 

between the desired level of accuracy and the computational 

resources allocated [13, 14]. 

To verify the integrity of the developed process model and 

estimated parameters, our primary focus lies in conducting a 

comprehensive evaluation of open-loop simulations. This 

involves examining the model's response to induced varia-

tions in input variables. In consequence, the steady-state 

simulation and step response of the system, utilizing the de-

sign data, discussed below. 
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4.1. Steady State Simulation 

The process model is simulated under steady and unwaver-

ing initial conditions, specifically tailored to a load of 660 MW. 

Through an open loop simulation spanning a duration of 5000 

seconds, the resulting outputs are meticulously observed, as 

visually presented in Figure 2. The comprehensive analysis 

includes graphical representations of the eight state variables, 

denoted as 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8 and the output variable 

MST (𝑦5). Notably, these plots are generated utilizing appro-

priate libraries in Julia [15] , with the observed variables posi-

tioned on the y-axis and the simulation time interval accurately 

depicted along the x-axis. 

The steady state simulation is conducted with utmost pre-

cision, ensuring accurate and reliable results. By carefully 

establishing and maintaining consistent initial conditions 

corresponding to a 660 MW load, the simulation captures the 

system's behaviour under these specific circumstances. The 

obtained outputs are carefully observed and analysed. The 

generated plots depict the eight state variables and the output 

variable MST, showcasing the intricate dynamics of the sim-

ulated process. These results are a testament to the fidelity of 

the simulation and provide valuable insights into the steady 

state behaviour of the system under examination. 

 
Figure 2. Open loop steady state response of system variables. 

4.2. Step Response 

Under steady and consistent initial conditions, the process 

model is simulated at a load of 660 MW for a duration of 5000 

seconds. To evaluate the system's response, a step change is 

introduced in the control inputs of coal flow and feedwater 

flow after 500 seconds. Specifically, both inputs are subjected 

to an instantaneous increase of 14 kg/s, causing coal flow to 

transition abruptly from 111.6 kg/s to 125.6 kg/s, and feed-

water flow to escalate from 513.6 kg/s to 527.6 kg/s. The 

consequential effects of these step changes on the state vari-

ables and the output variable MST are thoroughly analysed 

and graphically presented in Figure 3 and Figure 4, respec-

tively. These visual representations provide valuable insights 

into the dynamic behaviour of the system as influenced by the 

enforced step changes in control inputs. 

The conducted simulation, encompassing steady state 

conditions and step changes in control inputs, has yielded 

insightful results. By simulating the process model under 

consistent initial conditions at a 660 MW load, and subse-

quently introducing step changes in coal flow and feedwater 

flow, the impacts on the system's state variables and output 

variable MST have been thoroughly analysed. They are in line 

with the expected response. 
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Figure 3. Step applied in control inputs coal flow u1 and feedwater flow u2. 

 
Figure 4. Step response of state variables and output variable y5. 

5. Model Predictive Control Design 

5.1. Overview on Model Predictive Control 

Model Predictive Control (MPC) is an advanced and ef-

fective control technique specifically designed to address 

complex multivariable control problems. It is grounded in the 

integration of control and optimization objectives, process 

constraints, and the dynamic model of the system under con-

sideration. Particularly suitable for large-scale control prob-

lems with multiple inputs and multiple outputs, MPC enables 

effective management of constraints placed on both inputs 

and outputs. 

The fundamental concept of MPC can be succinctly sum-

marized as follows: Assuming a sufficiently accurate dynamic 

model of the process is available, MPC utilizes the model and 

current measurements to forecast future values of the outputs. 

By considering these predictions alongside the measurements, 

the appropriate adjustments to the input variables can be 

calculated. Crucially, MPC considers the input-output rela-

tionships as represented by the process model, coordinating 

changes across individual input variables. The calculations 

performed in MPC are based on the current measurements and 

predictions of future output values. The primary objective of 

MPC is to determine a sequence of control actions that opti-

mally guide the predicted response towards the desired set 

point in a proficient manner [16]. 

5.2. MPC Implementation 

We utilize a dynamic optimization specialized package in 

Python to implement MPC. This package serves as a promi-

nent algebraic modelling language for both linear and non-

linear programming applications, providing a comprehensive 

set of features. These features include automatic differentia-

tion, ODE discretization using orthogonal collocation on 

finite elements, and bundled large-scale solvers, Moreover, 

the package facilitates the development and application of 

advanced control strategies, such as model predictive control 

and real-time optimization, offering valuable tools for control 
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and optimization tasks in various domains. 

Optimization problems are typically composed of variables, 

equations, and objectives. In line with our chosen model vari-

able definition, the fundamental types employed are constants, 

parameters, variables, and intermediates. These variable types 

are subject to stringent boundary conditions, showcasing their 

distinctive characteristics within the optimization framework. 

In the context of MPC, the overarching objective is to minimize 

the disparity between the set point of the controlled variable 

and the model predictions, as shown below. 

𝑀𝑖𝑛
𝑥,𝑢

‖𝑥 − 𝑥𝑠𝑝‖            (19) 

where 𝑥 denote state variable, 𝑢 inputs and 𝑥𝑠𝑝  is the de-

sired set point or target condition for that state. The objective 

is typically a 𝑙1-norm or 𝑙2-norm. There are efficient solvers 

for optimization that can be customized. The popular 

open-source interior-point solver IPOPT is a generic solver 

often used. 

5.3. MPC Specifications for Boiler Turbine 

System 

We present a novel control design for the dynamic model of 

an OTBT unit. The proposed control strategy aims to maintain 

main steam temperature across a wide range of loads. Spe-

cifically, this paper presents a notable advancement in the 

design of our MPC system, focusing on the incorporation of 

coal flow and feedwater flow as additional controllers along-

side spray flows. Our research reveals that relying solely on 

spray flows for main steam temperature control in a 660 MW 

ultra-supercritical (UTC) power plant is insufficient. While 

spray flows exhibit satisfactory performance under minor load 

fluctuations, they fail to maintain optimal control in scenarios 

involving significant load swings and varying load profiles. 

A time horizon of 1000 seconds is established, discretized 

into 100 equally spaced intervals of 10 seconds each. To ad-

dress the specific requirements of our case, a multiple objec-

tive function is defined, taking into account both load and 

temperature set points. The primary objective is to achieve 

smooth control of the MST within a designated dead band 

around the set point, particularly when a load set point change 

is introduced. As such, MST (𝑦5) and load (𝑥7) are chosen as 

CVs. The dead band range for MST is specified as 603 ± 1°𝐶, 

while for load it is defined as 𝑁𝑒𝑠𝑝 ± 1000𝑘𝑊, with repre-

senting the desired load set point in kilowatts. The 𝑙1-norm is 

selected as for the objective function formulation. Addition-

ally, we assume that both CVs are measured. Time constant 

for MST response is set to be 150s. Regarding the load, the 

time constant is determined through a quadratic function fitted 

to the step size of the load set point change. The load reference 

trajectory is adjusted to realign with the variable's initial 

condition with each cycle, while the initial conditions are set 

to start at the bounds of the dead band, creating a consistent 

target over the horizon for MST. These CV options were 

finalized based on a series of experiments prioritizing smooth 

control of MST. 

Assuming that all state variables have been measured, we 

designate eight state variables (SVs) to incorporate their meas-

urements and adhere to non-negativity constraints. As we ex-

clude throttle valve regulation from this model, we consider this 

control input as a constant parameter, along with other dynamic 

parameters of the model. The remaining control inputs—coal 

flow, feedwater flow, primary spray flow, and secondary spray 

flow—are manipulated as manipulated variables (MVs) to 

achieve the desired control set by the objective function. Among 

the N-move control sequence that minimizes the objective, only 

the initial move is executed. Upon the availability of another 

measurement, the problem's parameters are updated, and a new 

optimization problem is formulated to determine the subsequent 

control action. This iterative optimization process, utilizing an 

objective function that is modified through process feedback, 

constitutes one of the fundamental features of MPC. Addition-

ally, there are constraints on MV movements to prevent infeasi-

ble conditions, such as significant jumps in MV values. It is 

important to note that our prediction horizon and control horizon 

are equivalent in duration. 

6. Closed Loop Simulation with MPC 

A closed loop simulation refers to a computational process 

in which a feedback loop is established between a controller 

and a dynamic system or process model. The simulation in-

volves iteratively exchanging information between the con-

troller and the model to evaluate the system's behaviour under 

varying conditions. The controller receives measurements 

from the system, uses them to calculate control inputs, and 

then feeds these inputs back to the model. The model simu-

lates the response of the system to these inputs, and the pro-

cess is repeated to observe how the system behaves over time. 

The closed loop simulation allows for the evaluation and 

optimization of control strategies, as well as the assessment of 

system performance and stability. 

In the context of a closed loop simulation utilizing the pro-

posed MPC model, the measured state variable values are in-

putted into the MPC controller. Subsequently, the controller 

computes the optimal control inputs required to guide the con-

trolled variables (CVs) towards a desired trajectory. The re-

sulting manipulated variable (MV) values are then employed 

by the process model to advance to the subsequent iteration. 

The subsequent discussion presents the outcomes and 

findings derived from this closed loop simulation. 

6.1. CASE 1: Load Ramp Down 

To investigate the system's behaviour, a test case is per-

formed by initializing our model under the operating condi-

tions of 660 MW. Subsequently, a ramp-down response is 

initiated by modifying the load set point to 560 MW, resulting 

in a substantial 100 MW change. The impact of this load 
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change on the state variables is analysed and depicted in Figure 5 and Figure 6, respectively. 

  

  
Figure 5. Closed loop response of system variables with load ramp down. 

  

  
Figure 6. Closed loop response of state variables with load ramp down. 

The conducted closed-loop simulation test case involving a load ramp-down scenario results portrays the predicted be-
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haviour of state variables and MST in response to the ramp. 

The results obtained from the real-time simulation, as de-

picted in Figures 5 and 6, demonstrate the system's response 

to the load change. It can be concluded that the employed 

control strategy, within the framework of the proposed 

closed-loop MPC model, successfully managed the load 

ramp-down scenario. The simulation results validate the ef-

fectiveness of the control approach in achieving the desired 

control objective and maintaining stability in the system. 

6.2. CASE 2: Load Ramp Up 

In continuation, we conducted a reverse of the previous test 

case by initializing our closed-loop model under the operating 

conditions of 560 MW. Subsequently, a ramp-up response was 

initiated by modifying the load set point to 660 MW, resulting 

in a significant 100 MW change. The impact of this load 

change on the state variables is discussed below and can be 

inferred from Figure 7 and Figure 8. 

The simulation test case involving a load up-down scenario 

yields results that portray the predicted behaviour of state 

variables and MST in response to the ramp. The analysis of 

these results provides evidence supporting the model's ability 

to accurately track the desired trajectory. These observations 

significantly contribute to the understanding of the system's 

response and confirm the effectiveness of the employed con-

trol strategy in managing the load ramp-up scenario. 

  

  
Figure 7. Closed loop response of state variables with load ramp up. 
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Figure 8. Closed loop response of state variables with load ramp up. 

6.3. General Test Case 

Here we present a comprehensive general test case, where 

the model is initialized at steady conditions with a load of 660 

MW and MST) set point of 603°C. The load profile designed 

for the experiment follows a specific sequence: 

660 MW -> 528 MW -> 396 MW -> 363 MW -> 330 MW -> 

363 MW -> 396 MW -> 528 MW -> 660 MW 

These load points represent the varying load levels during 

the simulation and serve as reference values for evaluating the 

system's behaviour. The results of the test case are presented 

and visualized in Figure 9 and Figure 10, respectively. 

  

  
Figure 9. Closed loop response of system variables. 
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Figure 10. Closed loop response of system variables. 

The MPC controller demonstrates efficient control action 

throughout the load profile, effectively tracking the desired 

trajectory without losing control, even during lower load 

profiles. These findings highlight the robustness and reliabil-

ity of the control strategy, underscoring its potential for prac-

tical applications in systems requiring precise and reliable 

control under varying load conditions. 

7. Conclusions 

In recent decades, research on feedback control strategies 

for temperature control in coal-fired plants has progressed at 

an accelerated pace. MPC, due to its inherent ability to handle 

constraints and multiple-input multiple-output processes, 

emerges as a feasible option for the boiler-turbine system. In 

this paper, it is presented a detailed application of mod-

el-based predictive control, utilizing the dynamic mathemat-

ical model specifically developed for OTB units. The process 

model after parameter estimation was thoroughly validated 

through open-loop tests, ensuring its accuracy and reliability. 

Subsequently, an overview of MPC was provided, followed 

by a comprehensive explanation of the proposed MPC design 

specifications. The additional advantage of incorporating coal 

flow and feedwater flow as manipulated variables, in addition 

to spray flows, has been firmly established. The effectiveness 

of the control strategy was assessed through closed-loop 

simulations, which demonstrated its robustness in handling 

induced load swings. The MST exhibited only minor devia-

tions from the specified set point, well within the permissible 

range, even under varying load profiles. The control perfor-

mance was observed to be consistently smooth, and multiple 

test cases presented in this study further support the model's 

efficient control capabilities. Overall, the established MPC 

design showcases a combination of robust control and optimal 

performance, affirming its potential for practical implemen-

tation in coal-fired plants. 

The authors declare that there is no competing financial 

interest or personal relationship that could have appeared to 

influence the work reported in this paper. 

Nomenclature 

𝑢   Coal flow command (kg/s) 

    Pulverized-coal flow in furnace (kg/s) 

𝑐0  Milling inertia time (s) 

𝑝  Steam pressure (MPa) 

𝐷  Steam or water mass flow rate (kg/s) 

𝑇  Temperature (°C) 

𝑕  Specific enthalpy (kJ/kg) 

𝑘11  
Energy absorbed by steam in economizer, waterwall and 

low temperature superheater by burning 1 kg coal (kJ/kg) 
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𝑘12  
Energy absorbed by steam in platen superheater by burning 

1 kg coal (kJ/kg) 

𝑘13  
Energy absorbed by steam in high temperature superheater 

by burning 1 kg coal (kJ/kg) 

𝑘2  Turbine coefficient 

𝑢𝑡  Throttle valve opening 

𝑁𝑒  Unit load (MW) 

Subscripts 

𝑚  State in separator 

𝑓𝑤  Feed water 

𝑠𝑡  State at throttle war 

𝑠𝑤1  Primary spray water 

𝑠𝑤2  Secondary spray water 

5  State at output of low temperature superheater 

4  State at input of platen superheater 

3  State at output of platen superheater 

2  State at input of high temperature superheater 

𝑠𝑤  Spray water 

Abbreviations 

OTB: Once-Through Boiler 

MPC: Model Predictive Control 

MST: Main Steam Temperature 

DAE: Differential Algebraic Equations 

MIMO: Multi-Input Multi-Output 
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